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1.         Introduction   

 

The character of electric field screening near the surface of a conductor is critically 

important for different problems of surface physics (Girard et al., 2000; Keller, 1996; 

Suleimanova & Yushkanov, 2020; Yushkanov & Zverev, 2017, Lifshitz & Pitaevsky, 

1979), in particular, the problem of propagation of plasma oscillations (Bozhevolnyi, 

2008; Pitarke et al., 2017). 

The purpose of the manuscript is to study the system of electron–plasma response 

with an arbitrary degree of degeneracy to an external alternating electric field. 

Here, we have obtained an analytical solution to the problem on the behavior of a 

semi-infinite plasma with an arbitrary degree of electron gas degeneracy in an external ac 

electric field perpendicular to the plasma surface. Such a situation takes place, e.g., when 

analyzing a solid-state semiconductor plasma. We use the Vlasov–Boltzmann kinetic 

equation with the Bhatnagar–Gross–Krook (BGK) collision integral for the electron 

distribution function and Poisson equation for the electric field. 

It makes it possible to separate energy absorption into the volume and surface 

components. Surface absorption is analyzed in detail. A nontrivial character of the 

dependence of surface absorption on the ratio between the volumetric electron collision 

frequency and the frequency of the external electric field is demonstrated. 
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2.       Formulation of the problem and basic equations 

 

The general statement of the problem is given in (Latyshev & Suleimanova, 2018). 

We will use the 𝜏-model Vlasov–Boltzmann equation: 

 
𝜕𝑓

𝜕𝑡
+ 𝐯

𝜕𝑓

𝜕𝐫
+ 𝑒𝐄

𝜕𝑓

𝜕𝐩
= 𝜈(𝑓𝑒𝑞 − 𝑓) (1) 

The behavior of the electric field in plasma is described by Poisson equation 

div𝐄 = 4𝜋𝜌,     𝜌 = 𝑒 ∫(𝑓 − 𝑓0)𝑑𝛺𝐹 ,   𝑑𝛺𝐹 =
(2𝑠 + 1)𝑑3𝑝

(2𝜋ℏ)3
 (2) 

 

Here, 𝑓 is the electron distribution function; 𝑓eq is the locally equilibrium Fermi–

Dirac distribution function, 𝑓𝑒𝑞(𝐫, 𝑣, 𝑡) = {1 + 𝑒𝑥𝑝
ℰ−𝜇(𝐫,𝑡)

𝑘𝑇
}

−1

, 𝑓0 = 𝑓𝐹𝐷 is the 

unperturbed Fermi–Dirac distribution function, 𝑓0(𝑣, 𝜇0) = 𝑓𝐹𝐷(𝑣, 𝜇0) = {1 +

𝑒𝑥𝑝
ℰ−𝜇0

𝑘𝑇
}

−1

, 𝐩 = 𝑚𝐯 is the electron momentum; ℰ = 𝑚𝑣2 2⁄  is the electron kinetic 

energy; 𝜇0 = 𝑐𝑜𝑛𝑠𝑡 and 𝜇(𝐫, 𝑡) are the unperturbed and perturbed chemical potentials, 

respectively; 𝑒 and 𝑚 are the charge and effective mass of an electron, respectively; 𝜌 is 

the charge density; ℏ is Planck’s constant; 𝜈 is the electron scattering frequency; 𝑠 is the 

particle spin (𝑠 =  1 2⁄  for electrons); 𝑘 is the Boltzmann constant; 𝑇 is the plasma 

temperature, which is assumed to be constant; and 𝐄(𝐫, 𝑡) is the electric field in plasma. 

Let us consider the condition of diffusive reflection of electrons from the boundary 

of a semi-infinite plasma: 𝑓(𝑥 = 0, 𝐯, 𝑡) = 𝑓eq(𝑥 = 0, 𝐯, 𝑡) at 𝑣𝑥 > 0, 𝑒(0) = 1, 

𝑒(+∞) < +∞. The external electric field on the plasma surface is perpendicular to the 

plasma boundary and varies in time as 𝐄𝑒𝑥𝑡(𝑡) = 𝐸0𝑒−𝑖𝜔𝑡(1,0,0). 

The corresponding self-consistent electric field in plasma has the form 𝐄(𝑥, 𝑡) =
𝐸(𝑥)𝑒−𝑖𝜔𝑡(1,0,0). 

We assume that the external field is sufficiently weak, so that the linear 

approximation is applicable. Eqs. (1) and (2) can be linearized with respect to the absolute 

Fermi–Dirac distribution function 𝑓0: 𝑓𝑒𝑞(𝑥, 𝑃, 𝑡) = 𝑓0(𝑃, 𝛼) + 𝑔(𝑃, 𝛼)𝛿𝛼(𝑥)𝑒−𝑖𝜔𝑡, 

where 𝑓0(𝑃, 𝛼) = 𝑓𝐹𝐷(𝑃, 𝛼) = (1 + 𝑒𝑃2−𝛼)
−1

, 𝑔(𝑃, 𝛼) = 𝑒𝑃2−𝛼 (1 + 𝑒𝑃2−𝛼)
2

⁄ , 𝐏 =

𝐩 𝑝𝑇⁄ = 𝐯 𝑣𝑇⁄ . Here 𝑣𝑇 is the electron thermal velocity given by 𝑣𝑇 = √2𝑘𝑇 𝑚⁄  and 𝛼 =
𝜇 𝑘𝑇⁄  is the reduced chemical potential. The change of the chemical potential is 

considered to be a small parameter so that representation 𝛼(𝑥, 𝑡) = 𝛼 + 𝛿𝛼(𝑥)𝑒−𝑖𝜔𝑡 is 

possible. We linearize the electron distribution function 𝑓(𝑥, 𝑃, 𝑃𝑥, 𝑡) = 𝑓0(𝑃, 𝛼) +
𝑔(𝑃, 𝛼)ℎ(𝑥, 𝑃𝑥)𝑒−𝑖𝜔𝑡, where ℎ(𝑥, 𝑃𝑥) is a new unknown function and ℎ(𝑥, 𝑃𝑥)~𝐸. 

As a result, we get a system containing new unknown functions and dimensionless 

variables. The detailed solution is given in (Suleimanova & Yushkanov, 2018). The 

solution is based on the method of separation of variables, is reduced to obtaining the 

dispersion function and search eigenfunctions by which we can decompose the resulting 

analytical solution. Dispersion function determines the range of solutions to the problem 

𝛬(𝑧) = 1 −
1

𝑤0
−

𝑧2 − 𝜂1
2

𝑤0𝜂1
2 𝜆0(𝑧, 𝛼), 
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𝜆0(𝑧, 𝛼) = 1 + 𝑧 ∫
𝑘(𝜇, 𝛼)𝑑𝜇

𝜇 − 𝑧

+∞

−∞

. 

Constants 𝑤0, 𝜂1
2 and function 𝑘(𝜂, 𝛼) have forms 

𝑓0(𝜂, 𝛼) =
1

1 + 𝑒𝜂2−𝛼
,          𝑘(𝜂, 𝛼) =

𝑓0(𝜂, 𝛼)

2𝑠0(𝛼)
, 

𝑠0(𝛼) = ∫ 𝑓0(𝑡, 𝛼)𝑑𝑡

+∞

0

,           𝑠2(𝛼) = ∫ 𝑡2𝑓0(𝑡, 𝛼)𝑑𝑡

+∞

0

, 

𝑤0 = 1 − 𝑖
𝜔

𝜈
,          𝜂1

2 = 𝑤0

𝜈2

𝜔𝑝
2

𝑠2(𝛼)

𝑠0(𝛼)
, 

𝛺 = 𝜔 𝜔𝑝⁄ , 𝜀 = 𝜈 𝜔𝑝⁄ , 𝜔𝑝 is the plasma (Langmuir) frequency, 𝜔𝑝 = √4𝜋𝑒2𝑁 𝑚⁄ , and 

𝑁 is the equilibrium electron number density (concentration). 

As a result of the solution, the induced electromagnetic field is represented as the 

sum of three terms corresponding to the expansion in the spectrum of the dispersion 

function. In general, the structure of an electric field arising in a plasma can be represented 

as 𝑒(𝑥) = 𝑒𝑑(𝑥) + 𝑒𝑐(𝑥),  

where 

𝑒𝑑(𝑥) = 𝐸∞ + 𝐸𝑑exp (−
𝑤0𝑥

𝜂0
), (3) 

𝑒𝑐(𝑥) = ∫
1

2𝜋𝑖(𝜂2 − 𝜂1
2)

(𝐶0 +
𝐶−1

𝜂 − 𝜂0
) (

1

𝑋+(𝜂)
−

1

𝑋−(𝜂)
)

∞

0

exp (−
𝑤0𝑥

𝜂0
) 𝑑𝜂. (4) 

 

Here 

𝐸∞ = 𝐶0 =
𝛬1

𝛬∞
,          𝐸𝑑 =

𝐶0(𝜂1 (𝜂0
2 − 𝜂1

2)⁄ + 𝛼−)

𝑋(𝜂0)(𝜂1𝛼+ − 𝜂0𝛼−)
, 

𝛬1 = 𝛬(𝜂1) = 1 −
1

𝑤0
,         𝛬∞ = 𝛬(∞) = 1 −

1

𝑤0
+

1

𝑤0
2𝜀2

, 

𝐶−1 = −
𝐶0[𝜂1 + 𝛼−(𝜂0

2 − 𝜂1
2)]

𝜂1𝛼+ − 𝜂0𝛼−
,        𝛼± =

𝑋(𝜂1) ± 𝑋(−𝜂1)

2
, 

𝑋(𝑧) =
1

𝑧
exp𝑉(𝑧),          𝑉(𝑧) =

1

𝜋
∫

𝜁(𝜏)𝑑𝜏

𝜏 − 𝑧

∞

0

, 

𝜁(𝜏) =
1

2𝑖
ln 𝐺(𝜏) − 𝜋. 

The detailed description of the function 𝐺(𝜏) is given in (Latyshev & Suleimanova, 2018; 

Suleimanova & Yushkanov, 2018). 

Here, 𝑒𝑑(𝑥) corresponds to the discrete spectrum and 𝑒𝑐(𝑥) corresponds to the 

continuous spectrum. 

The analysis below is based on the idea of seeking the zero 𝜂0 of the dispersion 

function in explicit form. As 𝜔 → 𝜔𝑝 and 𝜀 → 0, it turns out that 𝜂0(𝛺, 𝜀) → ∞. We use 

the expansion of the dispersion function for |𝜂0| > 1. Neglecting terms starting from the 
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order 𝜂−6 in the Laurent expansion of the dispersion function, from the equation 𝛬(𝜂0) =
0, we obtain 

𝜂0
2 = −

(𝛺 + 𝑖𝜀)2

𝛺(𝛺 + 𝑖𝜀) − 1
𝛬2(𝛼) +

𝛬4(𝛼)

𝛬2(𝛼)
, 

where 

𝛬2(𝛼) =
1

(𝜀 − 𝑖𝛺)2

𝑠4(𝛼)

𝑠2(𝛼)
−

𝜀

𝜀 − 𝑖𝛺

𝑠2(𝛼)

𝑠0(𝛼)
, 

𝛬4(𝛼) =
1

(𝜀 − 𝑖𝛺)2

𝑠6(𝛼)

𝑠2(𝛼)
−

𝜀

𝜀 − 𝑖𝛺

𝑠4(𝛼)

𝑠0(𝛼)
. 

We consider 𝑤0 𝜂0⁄  and 𝑤0 with 𝛺 = 1 as 𝜀 → 0: 

𝑤0

𝜂0
=

1 − 𝑖

√2
∙ √

𝑠2(𝛼)

𝜀𝑠4(𝛼)
,          𝑤0 = −

𝑖

𝜀
. (5) 

 

It is clear from expression (3) for the discrete spectrum with asymptotic formula 

(5) taken into account that the corresponding part of the electric field has coefficient of 

decay in 𝑥 proportional to (√𝜀)
−1

. It is clear from expression (4) for the continuous 

spectrum with the asymptotic 𝑤0 taken into account that the corresponding part of the 

field has decrement decrement proportional to 𝜀−1. This means that there are two layers 

0 ≤ 𝑥 ≤ 𝜀 and 𝜀 ≤ 𝑥 ≤ √𝜀 adjacent to the plasma boundary. In the first layer, we should 

take the contribution to the electric field determined by both the continuous and the 

discrete spectra into account. In the second layer, the decisive contribution to the electric 

field comes from the second term in (3) with the Debye amplitude. Second layer with 

𝑥~√𝜀 passes into the domain of a continuous medium, where the determining 

contribution to the electric field comes from the first term with the Drude amplitude. 

Passing to dimensional coordinates, we find that the first layer corresponds to the 

domain 0 ≤ 𝑥 ≤ 𝑙𝜀 and the second layer corresponds to the domain 𝑙𝜀 ≤ 𝑥 ≤ 𝑙√𝜀. Taking 

the definition of 𝜀 into account, we obtain 0 ≤ 𝑥 ≤ 𝑟𝐷 for first layer and 𝑟𝐷 ≤ 𝑥 ≤ √𝑙𝑟𝐷 

for second layer. Here 𝑟𝐷 is the Debye screening radius of the field. 

For large |𝜂0|, the magnitude of the electric field corresponding to the discrete 

spectrum is equal to 

𝑒𝑑(𝑥) =
𝛬1

𝛬∞
−

𝛬1

𝛬∞
exp (−

𝑤0𝑥

𝜂0
− 𝑉(𝜂0)), 

Considering that |𝜂0| ≫ 1 

𝑉(𝜂0) =
𝑉1

𝜂0
+

𝑉2

𝜂0
2 + ⋯, 

where 

𝑉𝑛 = −
1

2𝜋𝑖
∫[ln 𝐺(𝜏) − 2𝜋𝑖]

∞

0

𝜏𝑛−1𝑑𝜏,          𝑛 = 1,2, … 

This gives 

exp(−𝑉(𝜂0)) = 1 −
𝑉1

𝜂0
+ ⋯. 

The electric field corresponding to the discrete spectrum is calculated by the 

formula 
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𝑒𝑑(𝑥) =
𝛬1

𝛬∞
(1 − 𝑒

−
𝑤0𝑥
𝜂0 ) +

𝑉1𝛬1

𝜂0𝛬∞
𝑒

−
𝑤0𝑥
𝜂0 . 

Consequently, we have 𝑒𝑑(𝑥) =
𝑉1𝛬1

𝜂0𝛬∞
 at the plasma boundary with |𝜂0| ≫ 1. 

Taking into account the boundary condition on the field 𝑒𝑑(0) + 𝑒𝑐(0) = 1, we obtain 

that 𝑒𝑐(0) = 1 −
𝑉1𝛬1

𝜂0𝛬∞
 at |𝜂0| ≫ 1. 

Thus, in the first layer, the contributions to the electric field of the discrete and 

continuous spectra are comparable in magnitude. This means that the contribution of the 

continuous spectrum near the surface (in the first layer) should be taken into account, 

because both quantities 𝑒𝑑(0) and 𝑒𝑐(0) have the same order at 𝜂0 → ∞. 

 

3. Conclusion 

 

In this work, we analyze the behavior of the electric field near the interfaces for 

frequencies close to the frequency of plasma oscillations. 

We analyzed the dependence of the domain where the Debye mode exists on 

problem parameters such as the chemical potential of the electron gas and the electron 

collision frequency. 

We investigated the case where the frequency of the external field oscillations is 

close to the resonant frequency of plasma oscillations. The investigation showed that a 

layer of the width 0 ≤ 𝑥 ≤ 𝑟𝐷 is adjacent to the plasma surface. In this layer, the field 

behavior is determined by three terms: the Drude and Debye modes (they both correspond 

to the discrete spectrum of the problem) and the van Kampen mode (it corresponds to the 

continuous spectrum). A second layer has the width 𝑟𝐷 ≤ 𝑥 ≤ √𝑙𝑟𝐷. In this layer, the 

field behavior is determined by Drude and Debye modes, and the Debay mode is main 

characteristic responsible for the oscillation regime. 
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